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Abstract. We evaluate three meson doorway mechanisms for nucleon-antinucleon annihilation at rest for
the first time. Detailed results are presented for the final state φπ0 originating from the 3S1 initial state
and for the φρ channel originating from 1S0. The results presented also include the improved contributions
from two meson doorway states and from the tree diagrams. For all the channels considered a consistent
explanation of large and small OZI violations emerges.

PACS. 13.75.Cs Nucleon-nucleon interactions (including antinucleons, deuterons, etc.) – 12.40.Vv Vector-
meson dominance

1 Introduction

Recent and accurate data for nucleon-antinucleon annihi-
lation at rest from experiments performed at LEAR [1–8]
have challenged our understanding of the underlying an-
nihilation mechanisms and of the production of mesons
with hidden strangeness in particular. Large violations of
the OZI rule for special channels have been observed. The
biggest deviation from the OZI prediction for hadronic
channels occurs for the φπ0 final state and has led to
speculations about the internal structure of the nucleon
suggesting a large ss̄ component in the wave function [9–
11]. Earlier analysis [12–21] has shown that two meson
doorway contributions have the correct magnitude to ex-
plain the experimental branching ratio for this reaction.
The present paper extends the preceding calculations by
including three meson doorway states. Sizable OZI-rule
avoiding contributions are expected from such intermedi-
ate states since the first step, the annihilation into three
non-strange mesons, represents about one third of the to-
tal annihilation cross section.

Based on the results of [22] we shall present a compre-
hensive effort of calculating all relevant diagrams involv-
ing (non-strange) three meson intermediate states leading
to the two meson final states φπ0 and φρ0. The corre-
sponding two-loop amplitudes have been evaluated with
full spin. We have also completed the evaluation of one-
loop amplitudes (two-meson-doorways) where needed. For
completeness we report some of the results on other two-
meson final states. We shall show that the results consis-
tently explain the size of large and small OZI violations.

The paper is organized as follows. In Sect. 2 we de-
scribe the three meson doorway formalism. A generic case

is reported in some detail while technicalities are relegated
to the Appendices. Section 3 presents the three-meson-
doorway results. Updated calculations for the two-meson
doorway amplitudes are included and the full calculation
is compared to the experimental branching ratios. Sec-
tion 4 gives the conclusions.

2 Three-meson doorway mechanisms

The generic three-meson-doorway diagram is shown in
Fig. 1 which also defines the notation in terms of four and
three vectors. The crosses in Fig. 1(b) denote the unitarity
approximation for which all the three s-channel particles
are on their mass shell. The available data for the anni-
hilation into three mesons relevant for the first step of
the three-meson-doorway mechanisms are summarized in
Table 7 of Appendix A.2.

Fig. 1. (a) The generic three-meson-doorway diagram; (b) uni-
tarity approximation. The notation pn = (En,kn) is used for
the four–momenta of the particles n = a, b, c, x, y, z, v, w in the
CMS
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The basic expression for the amplitude without spin is

T =
i2

(2π)8

·
∫∫

1
(p2
x−m2

x+iε)(p2
y−m2

y+iε)(p2
z−m2

z+iε)

· gagbgcgd d
4px d

4py
(p2
v−m2

v+iε)(p2
w−m2

w+iε)
. (1)

where ga, gb, gc, and gd are the coupling constants corre-
sponding to the vertices a, b, c, d in Fig. 1(a). In the on-
shell or unitarity approximation Fig. 1(b), the amplitude
TUA has the form

TUA =
igagbgcgd

2(2π)5

∫
dΦ3(pa, px, py, pz)

(p2
v −m2

v + iε)(p2
w −m2
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(2)

where dΦ3 is the phase space of the intermediate three-
meson state

dΦ3(pa, px, py, pz) = δ(pa − px − py − pz)

· d
3kx

2Ex
d3ky
2Ey

d3kz
2Ez

(3)

The extension of (1,2) to the case of particles with spin is
straightforward. The details for the vertex spin structure
and coupling constants used are given in Appendix A.
The spin formalism for the overall amplitude of Fig.1 is
summarized in Appendix B.

The leading two-loop mechanisms for the reactions
pp̄ → φπ0 correspond to the diagrams in Table 1. The
φπ channel has IG = 1+ and originates from the pp̄(3S1)
state JPC = 1−−. Here we expect that the ρππ doorway
mechanism is important because the ρππ system has the
largest phase space among all three meson states with pos-
itive G-parity and is strongly produced in pp̄ annihilation
(see Appendix A, Table 7). The two-loop diagrams in Ta-
ble 1 all proceed through the same doorway mesons (ρππ)
but differ by the mesons exchanged in the t-channel. The
ππ subsystem in the intermediate state has total isospin
I = 0 and total angular momentum J = 0. Thus there
is no danger of double counting when this three-meson
doorway mechanism is added to the two-meson ρρ door-
way mechanism which is known to be very important [19].

Spin effects have been calculated by introducing scalar
invariant functions as described in Appendix B. As a cross
check, helicity amplitudes for the full amplitude T have
been evaluated, squared and summed. Several charge con-
figurations for the intermediate states, see Table 1, add
coherently leading to an enhancement of the two-loop con-
tributions. The corresponding isospin factors are collected
in Table 8 of Appendix B.1. Because the t-channel parti-
cles can reach the mass shell, the unitarity approximation
acquires a real part. A similar situation has been encoun-
tered already in the one loop calculation for the two-meson
doorway mechanism [19].

For the kinematical situations where the t-channel par-
ticles are off-shell we have introduced monopole form fac-
tors

Fb(λv) =
λ2
v −m2

v

λ2
v − p2

v

=
λ2
v −m2

v

λ2
v − (pb − px)2

(4)

Table 1. Two-loop and one-loop diagrams for the reaction
pp̄(1S0) → φπ. The corresponding amplitudes T are normal-
ized to the tree-level amplitude gtree

a→φπ from ωφ mixing

Fc(λw) =
λ2
w −m2

w

λ2
w − p2

w

=
λ2
w −m2

w

λ2
w − (pb + py)2

. (5)

The parameters have been varied in the range λv, λw =
(1.0 − 1.5) GeV, similar to the one loop calculation
[19]. The form factors reduce the unitarity amplitude by
about a factor two. For a calculation beyond the unitar-
ity approximation form factors for the s-channel doorway
mesons must be introduced as well. The corresponding
off–shell contributions are expected to be comparable to
the unitarity amplitude, similar to the detailed evaluations
done in the one-loop case [19].

Turning to the φρ channel which has IG = 1− and
originates from the pp̄(1S0) state JPC = 0−+, we expect
that the πππ and ωππ doorway mechanisms are important
because these intermediate states have the largest phase
space among all three meson states with negativeG-parity.
Several states for the πππ system are possible in this case
which can be classified by the symmetry of the isospin
wave function. The completely symmetric isospin wave
function corresponding to the Young tableau has
isospin I = 1 (another completely symmetric state I = 3
is excluded by isospin conservation) [23], with the space
part being also completely symmetric. In Appendix A, the
notation gA3π is used for the corresponding coupling con-
stant. The state with the mixed symmetry of the isospin
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Table 2. Two-loop and one-loop diagrams for the reaction
pp̄(1S0)→ φρ. The corresponding amplitudes T are normalized
to the tree-level amplitude gtree

a→φρ from ωφ mixing

part can also have total isospin I = 1, the corre-
sponding coupling constant is gB3π (see Appendix A for
details). In this case the 3π state always contains a pion
pair with total isospin Iππ = 1 and odd relative angular
momentum. It is likely that this configuration is saturated
by the ρ±π∓ channel (the channel ρ0π0 is not coupled to
the φρ0 because of wrong C-parity). We shall drop such
three–meson intermediate states to avoid double count-
ing. The completely antisymmetric isospin wave function
has total isospin I = 0 and cannot occur in the annihi-
lation into φπ. Concerning the intermediate state ωππ,
its isospin structure is completely determined by the to-
tal isospin of the final state I = 1 which is equal to the
isospin of the pion pair. Therefore one can expect that
this intermediate state is saturated by the one-loop in-
termediate state ωρ0. For the purpose of information the
tables show all relevant amplitudes calculated separately.
The two-loop contributions are fairly sizable.

Table 3. The branching ratios BR calculated for various door-
way mechanisms in comparison with the experimental data (in
units 10−4). The values marked 1-loop and 2-loop contribu-
tions correspond to different ways of adding the amplitudes
coherently

Reaction / Mechanism BR · 104

pp̄→ φπ0 (tree-level) 0.13
pp̄→ K∗K̄ → φπ0 0.5− 1.4
pp̄→ ρρ→ φπ0 0.05− 2.0
pp̄→ φπ0 (1-loop) 0.9− 5.1
pp̄→ ρ0ππ → φπ0 0.22
pp̄→ πρ0π → φπ0 1.1
pp̄→ φπ0 (1-loop and 2-loop) 5.9− 17
pp̄→ φπ0 (experiment) 6.5± 0.7 [7]

7.6± 0.6 [8]
4.0± 0.8 [2]

pp̄→ φρ0 (tree-level) 0.14
pp̄→ φρ0 (one-loop) 0.1
pp̄→ ωππ → φρ0 0.08
pp̄→ πππ → φρ0 0.10
pp̄→ φρ0 (1-loop and 2-loop) ∼ 2
pp̄→ φρ0 (experiment) 3.4± 1.0 [2]

pp̄→ φη (tree-level) 0.2
pp̄→ K∗K̄ → φη 1.0
pp̄→ φη (experiment) 0.78± 0.21 [5]

3 Results

The complete results for the φπ0 and φρ0 channels are
summarized in Tables 1, 2, and 3. The three-meson door-
way states shown are the ones leading to the biggest
contributions. The contributions from other intermediate
states have been calculated and were found to be negli-
gible [22]. The ’tree-level’ amplitudes correspond to the
ωφ mixing which is proportional to the deviation of the
physical mixing angle Θ = 37.6o [24] from the the ideal
one Θi = 35.3o:

gtree
a→φX = tan (Θ −Θi) · ga→ωX . (6)

The on-shell values of the vertex functions occurring
in the calculation are constrained directly by experimen-
tal information. For the annihilation vertices, the data
are shown in Table 7 and the corresponding coupling
constants have been parametrized as described in Ap-
pendix A.2. The remaining vertices have been calculated
from the measured decay widths of the corresponding
mesons and are collected in Appendix A.1. The values
shown in Table 3 do not include the form factors of (4,5)
which lead to a reduction by about a factor of two. This
should be quite a reliable approximation since this reduc-
tion is expected to be partially compensated by contri-
butions originating from off-shell s-channel propagation,
similarly to the case of two-meson doorway mechanism
[19], as mentioned in the context of (4,5).

In general, major cancellations between amplitudes
corresponding to different intermediate states are not
likely to occur for the unitarity approximation. Because
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the main contribution in this case comes from the absorp-
tive part of loop diagrams, the situation is very differ-
ent from the well known case of Lipkin cancellations [25]
where, contrary to our situation, threshold effects are neg-
ligible and specific intermediate states interfere distruc-
tively. In the case of the φπ channel the situation has
been discussed in detail [19] for the one-loop mechanism.

For the case of the ρρ doorway contribution to φπ0

we have evaluated the full range of the possible coupling
constants, see Appendix C, complementing the results in
[22]. The corresponding range is indicated in Table 3.

For the OZI–violating final state φπ0 the calculated
branching ratio in Table 3 is well within the experimental
range. The three–meson doorway contributions are com-
parable with the two–meson ones. The range of theoretical
predictions when adding the amplitudes coherently now
easily includes the experimental branching ratios while the
one-loop results alone are somewhat low. For the φη chan-
nel, the two-meson-doorway mechanism with the K∗K̄ in-
termediate state has been found to be comparable with
the experimental data. The two-loop calculations for the
φρ final states are also reported in Table 3. As has been
mentioned at the end of Sect. 2, two of the diagrams in-
volve double counting with one-loop mechanisms, which is
not easily quantified. However, the two-loop contributions
obviously improve the comparison with the experimental
branching ratio.

At the end of this section we would like to mention
that we have also evaluated two and three-meson doorway
contributions for a number of two meson final states (ππ,
ρπ, ρρ and ρω) without hidden strangeness. It is gratifying
to observe that all the doorway contributions calculated
have turned out to be relatively small when compared to
the experimental rates for the corresponding annihilation
channels.

4 Conclusions

We have found that the observed OZI violating enhance-
ment of φ meson production at rest can be naturally ex-
plained by two and three meson doorway contributions. In
our analysis, there appears to be no need to introduce a
large ss̄ fraction into the nucleon wave function. The door-
way calculations presented here are well constrained by
experimental information. In the first step of the doorway
mechanism the annihilation rates into non-strange mesons
enter. For annihilation at rest these transition rates are
well measured. This is particularly true for the largest
observed OZI violation in pp̄ → φπ0 where detailed in-
formation on the spin–isospin dependence of the ampli-
tudes for the annihilation pp̄→ K∗K̄ exists. Similarly the
meson decay vertices occuring in the second step of the
one–loop doorway mechanism are directly constrained by
the measured decay widths. The leading one–loop con-
tribution is thus well determined. In the present paper
we have shown that the dominant three–meson doorway
mechanisms (two loops) for pp̄→ φπ are of similar size as
the one loop contributions. It is therefore established that
the full calculation leaves ample space for accommodating

any remaining descrepancy with the measured branching
ratio. At the same time two and three-meson doorway con-
tributions to all the other channels involving φ mesons in
the final state are small but not negligible due to interfer-
ence, which again is in agreement with measured branch-
ing ratios. Four-meson-doorway contributions and higher
are expected to be negligible due to progressively van-
ishing probability to rearrange non-strange multi-meson
intermediate states into two–meson final states. We there-
fore believe that the present multiple doorway analysis is
qualitatively exhaustive for nucleon-antinucleon annihila-
tion into φ mesons at rest. Extending these calculations
towards higher energies seems desirable. However, the ex-
perimental information on the energy dependence of the
production of the intermediate states is far less detailed
and large uncertainties in the corresponding predictions
appear to be unavoidable.

We are grateful to M. Sapozhnikov for stimulating discussions.
This paper was supported in part by the Swiss National Science
Foundation.

Appendix A
Coupling constants

In this appendix, we collect the coupling constants for
p̄p annihilation at rest into various two and three-meson
annihilation channels and the required coupling constants
for meson decays. For most cases, the couplings can be ex-
pressed in terms of partial decay widths which are known
from experiment and provide a model-independent input
to the calculations of the doorway mechanisms.

A.1 Vertices for two-particle decays

The amplitudes corresponding to the transitions a→ b+c
involving pseudoscalar fields φ and vector fields V µ with
minimal number of derivatives have the following form in
momentum space

〈φbφc|T |Va〉 = gV φφ εa · (pb − pc) (A1)

〈Vbφc|T |Va〉 = gV V φ εµναβ p
µ
aε
ν
ap
α
b ε
β
b (A2)

〈VbVc|T |Va〉 = g
(1)
V pa · εb εa · εc + g

(2)
V pa · εc εa · εb

+g(3)
V pb · εa εb · εc (A3)

where pa, pb, pc are the corresponding four-momenta, εa,
εb, εc are the polarization vectors and εµναβ is the to-
tally antisymmetric Levi-Cività tensor. The decay widths
Γa→b+c are related to the corresponding coupling con-
stants gabs by

Γa→b+c =
g2
abcf(kbc)kbc

8πm2
a

(A4)

kbc =

√
(m2

a − (mb +mc)2)(m2
a − (mb −mc)2)

2ma
(A5)
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Table 4. The spin-weight functions f(kbc), (A4), for two par-
ticle decays. For the three-vector-meson vertex (A3), the two
cases correspond to the situations considered in Sect. C: (a)

g
(12)
v = g

(1)
v = −g(2)

v , g
(3)
v = 0 and (b) g

(1)
v = g

(2)
v = 0, g

(3)
v 6= 0,

both assuming mb = mc

Reaction a→ b+ c Spin-weight functions f(kbc)

0+ → 0±0± 1

0− → 1−1− 2m2
ak

2
bc

1− → 0±0± 4
3
k2
bc

0± → 1−0±
4m2

ak
2
bc

3m2
b

1− → 1−0− 2
3
m2
ak

2
bc

1− → 1−1− (a)
m2
a(m2

a + 2m2
b + 2m2

c)k
2
bc

3m2
bm

2
c

1− → 1−1− (b)
2k2
bc

3

(
3 +

m2
ak

2
bc

m2
bm

2
c

)

where kbc is the CMS momentum of the particles b ans c,
ma, mb, and mc are the corresponding particle masses and
f(kbc) are the spin-weight functions defined in Table 4.

The following coupling constants for the meson de-
cays were used in the present calculations: gρππ = 6.00,
gφKK̄ = 4.6, gK∗Kπ = 5.54, gφρπ = 1.86 GeV−1. The nu-
merical values of the coupling constants for the two-meson
pp̄ annihilation are summarized in Table 5 together with
the corresponding experimental branching ratios. For the
sake of convenience, the pp̄ annihilation coupling constants
are normalized to the partial widths of the ground state
of the pp̄ atom. These partial widths are related to the
corresponding annihilation cross sections σpp̄→b+c by

Γpp̄→b+c = (vσpp̄→b+c)v→0|ψ1S(0)|2 (A6)

where v is the relative velocity and |ψ1S(0)|2 = α3m3
p

8π is
the probability density for the 1S atomic state at zero sep-

Table 5. The experimental branching ratios for the two-meson pp̄ annihilation at rest and the corresponding coupling constants
used in the present calculations. The coupling constants are normalized to the total width of the atomic (pp̄)1S state Γ(pp̄)1s =
1 keV (the singlet–to–triplet ratio 1 : 3 is assumed for the pp̄ spin fractions)

Process Ref. Branching ratio BR gabc

pp̄(1S0)→ φρ [2] (3.4± 1.0) · 10−4 ga→φρ = 8.71 · 10−4

pp̄(liq.)→ ωρ0
→π+π− [26] (2.26± 0.23) · 10−2 ga→ωρ = 2.77 · 10−3

pp̄(S →3S1)→ φπ0 [7] (6.5± 0.6) · 10−4 ga→φπ = 3.43 · 10−4

[5] (5.5± 0.7) · 10−4

[8] (7.57± 0.62) · 10−4

[2] (4.0± 0.8) · 10−4

pp̄(S →3S1)→ ωπ0 [3] (5.7± 0.5) · 10−3 ga→ωπ = 7.59 · 10−4

[27] (5.2± 0.5) · 10−3

pp̄→ ρρ [12] 2.4 · 10−2 g
(1)
ρρ = 8.21 · 10−4

g
(2)
ρρ = 9.79 · 10−4 GeV−1

pp̄→ K∗K̄, K̄∗K [28] 0.23 · 10−2 gK∗K̄ = 7.0 · 10−4 GeV−1

aration between p and p̄. This gives the following relation
between the coupling constants listed in Table 5 and the
S-wave annihilation amplitudes gp+p̄→b+c at zero energy:

g2
a→b+c = g2

p+p̄→b+c
|ψ1S(0)|2
mp

= g2
p+p̄→b+c

α3m2
p

8π
(A7)

A.2 Vertices for three-meson annihilation

In the case of three-particle transitions a→ x+ y + z we
consider reactions of the following types

0− → 0− 0− 0−

0− → 1− 0− 0−

1− → 1− 0− 0−

The corresponding amplitudes with a minimal number of
derivatives read

〈φxφyφz|T |φa〉 = gpppp (A8)

〈φxφyVz|T |φa〉 = gpppv εµναβ p
µ
ap
ν
xp
α
y ε
β
z (A9)

〈φxφyVz|T |Va〉 = gvppv εa · εz (A10)

The coupling constants gaxyz are related to the three-body
transition widths Γa→xyz by

Γa→xyz =
g2
axyz

2ma(2π)5

∫
w dΦ3. (A11)

where w are the kinematical factors given in Table 6 and
the three-body phase space dΦ3 is defined by (3).

For the pp̄(0−) → πππ vertex we have two cases con-
sidered in Sect. 2. The vertex that is completely symmet-
ric in the isospin of the πππ system corresponds to (A8)
with the coupling constant gA3π. The vertex with the mixed
symmetry is given by

〈π+π0π−|T |pp̄(J = 0−, I = 1)〉
= gB3π(p0 · p+ + p0 · p− − 2p+ · p+) (A12)
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Table 6. Spin–weight functions w for different three-body final
states. The kx and ky are the 3-momenta of particles x and y
in the CMS. The interaction terms are defined in (A8-A10)

Reaction Spin-weight factor
a→ x+ y + z w

0− → 0− 0− 0− 1

0− → 1− 0− 0− m2
a(k2

xk
2
y − (kxky)2)

1− → 1− 0− 0− 1 +
1

3

k2
x

m2
x

where p+, p0, p− are the four-momenta of the correspond-
ing pions.

The numerical values of the coupling constants for the
three-meson pp̄ annihilation are summarized in Table 7
together with the corresponding experimental branching
ratios.

Appendix B
Evaluation of Amplitudes with Spin

The on-shell approximation Fig. 1(b) for particles with
spin leads to the following expression for the covariant
amplitudes TUA replacing the spinless case of (2)

TUA =
igagbgcgd

2(2π)5

∫
w(px, py, pz)dΦ3(pa, px, py, pz)
(p2
v −m2

v + iε)(p2
w −m2

w + iε)
(B1)

The evaluation of the spin–weight functions w(px, py, pz)
can be done on the amplitude level using a decomposition
of the spin functions into covariant tensor structures built
of the external momenta pa and pb. The corresponding
computations have been done using symbolic codes writ-
ten in MAPLE and were verified by hand for several cases.
As a further, independent check we have determined he-
licity amplitudes in an explicit polarization basis, see e.g.
[32], and calculated the sum of the squared helicity am-
plitudes.

Table 7. The experimental branching ratios for the three–meson pp̄ annihilation at rest and the corresponding coupling
constants used in the present calculations. The coupling constants are normalized to the total width of the atomic (pp̄)1S state
Γ(pp̄)1s = 1 keV and the singlet–to–triplet ratio 1 : 3 is assumed for the pp̄ spin fractions

Process Ref. Branching ratio BR |gabcd|

pp̄(liq.)→ ωππ [26] 0.066± 0.006
pp̄(S → 1S0)→ ωρ0

→π+π− [26] 0.0226± 0.0023 gpp̄(1S0)→ωππ = 0.21 GeV−3

pp̄(S)→ π0π+π− [29] 0.066± 0.008
pp̄(S → 1S0)→ (π0π+π−)ph.sp. 0.066 · (0.083± 0.029) gApp̄(1S0)→3π = 0.015

pp̄(S → 1S0)→ ρ±π∓ 0.066 · (0.014± 0.006) gBpp̄(1S0)→(3π) = 0.0056

pp̄(liq.)→ π0π+π− [30] 0.069± 0.004

pp̄(liq.)→ π0π0π0 [6] (6.2± 1.0) · 10−3

pp̄(S → 1S0)→ π0π0π0 6.2 · 10−3 · 0.54 gApp̄(1S0)→3π = 0.010

pp̄(S → 3S1)→ ρ→π+π−σ→π+π− [31] 7.61 · 10−2 · 0.50 gpp̄(3S1)→ρππ = 0.043

B.1 Invariant Amplitudes and General Tensor Decom-
position

The covariant integrals over internal momenta pµx and pµy
can generally be expressed in terms of linearly indepen-
dent tensors constructed of the external momenta, pµa and
pµb multiplied by invariant amplitudes. For the one-loop
diagrams (see Tables 1 and 2) we introduce the following
notation

〈pµx〉 =
∫

f(px, pa, pb) pµx d
4px (B2)

where the scalar function f(px, pa, pb) is defined by a di-
rect calculation of the one loop diagram. The general form
of this integral is given by

〈pµx〉 = I
(1)
1 pµa + I

(1)
2 pµb (B3)

where the coefficients I(1)
1 and I(1)

2 can be found straight-
forwardly:

I
(1)
1 = 〈kbEx − Ebkxzx

makb
〉 (B4)

I
(1)
2 = 〈kxzx

kb
〉 . (B5)

Here the notation 〈. . .〉 is defined similarly to (B2) with
the same scalar function f(px, pa, pb). The second order
expressions in the one–loop case contain in addition two
products of pµa and pµb and the metric tensor gµν :

〈pµxpνx〉 = I
(2)
1 gµν + I

(2)
2 pµap

ν
a + I

(2)
3 (pµap

ν
b + pµb p

ν
a)

+I(2)
4 pµb p

ν
b (B6)

where

I
(2)
1 = 〈− (1− z2

x)k2
x

2
〉 (B7)

I
(2)
2 = 〈2(k2

xz
2
x + E2

x)k2
b−4EbkbExkxzx−(1−3z2

x)m2
bk

2
x

2m2
ak

2
b

〉

(B8)
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I
(2)
3 = 〈 ((1− 3 z2

x)Ebkx + 2 kbExzx)kx
2mak2

b

〉 (B9)

I
(2)
4 = 〈− (1− 3 z2

x)k2
x

2 k2
b

〉. (B10)

In the case of two-loop amplitudes we have more in-
ternal degrees of freedom, and (B6) is replaced by

〈pµxpνy〉 =
∫

f(px, py, pa, pb) pµx p
ν
y d

4px d
4py. (B11)

The tensor decomposition for this expression takes the
following form

〈pµxpνy〉 = I
(xy)
1 gµν + I

(xy)
2 pµap

ν
a + I

(xy)
3 (pµap

ν
b + pµb p

ν
a)

+I(xy)
4 pµb p

ν
b . (B12)

where

I
(xy)
1 = 〈− (Z − zxzy)kxky

2
〉 (B13)

I
(xy)
2 = 〈2 (kxkyzxzy + ExEy)k2

b − 4EbkbExkxzx
2m2

ak
2
b

− (Z − 3 zxzy)m2
bkxky

2m2
ak

2
b

〉 (B14)

I
(xy)
3 = 〈 ((Z − 3 zxzy)Ebkx + 2 kbExzy)ky

2mak2
b

〉 (B15)

I
(xy)
4 = 〈− (Z − 3 zxzy)kxky

2 k2
b

〉. (B16)

A generalisation to tensors of higher rank is straightfor-
ward. In particular, the following expressions for a rank
three tensor appear in the two–loop diagrams:

I
(yxx)
7 = 〈 (zxZ − zy)k2

xky
2

− ((Z − zxzy)Exkxky − (1− z2
x)Eyk2

x)kb
2Eb

〉 (B17)

I
(yxy)
7 = 〈

(zx − zyZ)kxk2
y

2

+
((Z − zxzy)Exkxky − (1− z2

y)Exk2
y)kb

2Eb
〉 (B18)

The different topologies of the two-loop diagrams involv-
ing vector and pseudoscalar mesons are shown in Fig.2.
The corresponding complete spin weight functions (B1)
for the diagrams A–D are listed below.

wA(kx, ky, zx, zy) (B19)
= (kbEy + Eckyzy)(kbEx − Ebkxzx)

+
1

2makb

{
−
[(

(zx + zyZ)Ecky + (zxzy + Z)kbEy
)
E2
b

+ (zxzy + Z)E2
ckbEx

]
kxky

+
[(

(zx + zyZ)k2
y + 2m2

yzx
)
Exkx

Fig. 2. Different three-meson doorway processes involving
pseudoscalar particles (thin lines) and vector particles (thick
lines)

−
(
(zy + zxZ)k2

x + 2m2
xzy
)
Eyky

]
k2
b

−
[(

(z2
y + 1)k2

y + 2m2
y + (zxzy − Z)kxky

)
Ex

+
(
(z2
x + 1)k2

x + 2m2
x + (zxzy − Z)kxky

)
Ey
]
k3
b

+
[
(zy + zxZ)E2

ck
2
xky +

(
(zx + zyZ)Exkxk2

y

− (zy + zxZ)Eyk2
xky +

(
(2kxzxkyzy + (z2

y + 1)k2
y)Ex

+ (2kxzxkyzy + (z2
x + 1)k2

x)Ey
)
kb
)
Ec

+
(
2(kxzx + kyzy)ExEy + ((z2

y + 1)k2
y + 2m2

y

+ (zxzy − Z)kykx)kxzx
)
k2
b +

(
(zxzy + Z)ExEykxky

+ ((zxzyZ − z2
x − z2

y − Z2)k2
y − (z2

x + 1)m2
y)k2

x

)
kb
]
Eb

−
[(

2(kxzx + kyzy)ExEy + ((z2
x + 1)k2

x + 2m2
x

+ (zxzy − Z)kxky)kyzy
)
k2
b −

(
(zxzy + Z)ExEykxky

+ ((zxzyZ − z2
x − z2

y − Z2)k2
x − (z2

y + 1)m2
x)k2

y

)
kb
]
Ec
}
.

wB(kx, ky, zx, zy)

= −2
(
I

(2)
1 + I

(yxx)
7

Eb
makb

)(
pa · pypc · py − pa · pcm2

y

)
+ 2

(
I

(xy)
1 + I

(yxy)
7

Eb
makb

)
· (pa · pypc · px − pa · pcpx · py) (B20)

wC(kx, ky, zx, zy)

= I
(1)
1 (pc · pwpy · pv − pc · pvpy · pw)

+ I
(2)
1 py · pw − I(xy)

1 py · pv +

+
(
I

(yxx)
7 pc · pw − I(yxy)

7 pc · pv
) Eb
makb

(B21)

wD(kx, ky, zx, zy)

= I
(1)
1

[
(m2

y −m2
c)(m

2
y −m2

c + 2(pa − px) · (pc − py)
m2
w

−(pc + py)2 + 2(pa − px) · (pc + py))
]

(B22)

The isospin factors resulting from the summation over
all intermediate states in the diagrams of Tables 1 and 2
are listed in Table 8.
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Fig. 3. The branching ratios corresponding to the door–way ρρ mechanism for (a) φπ0 and (b) ωπ0 production from pp̄(3S1)
annihilation. The parameter ϑ defines the relative strength of the two couplings in the pp̄→ ρρ vertex, see (C1) and (C2)

Table 8. The isospin factors corresponding to the three-meson
door–way mechanisms pp̄→ xyz → φX

Mechanism Isospin factor

pp̄(3S1)→ πρπ → φπ0 1

pp̄(3S1)→ ρππ → φπ0 1
3

pp̄(1S0)→ πππ → φρ0 (A) 5√
3

pp̄(1S0)→ πππ → φρ0 (B)
√

3

pp̄(1S0)→ ππω → φρ0
√

2
3

pp̄(1S0)→ πωπ → φρ0 −
√

2
3

Appendix C
Re-evaluation of pp̄→ ρρ→ φπ

For the ρρ diagram the effective Langrangian is not unique
since the annihilation vertex pp̄ → ρρ allows for two in-
variant couplings with minimal number of derivatives. As
in [13], these are denoted by

T
(1)
pp̄→ρρ = g1 (εpp̄ ·εx kpp̄ ·εy − εpp̄ ·εy kpp̄ ·εx) (C1)

T
(2)
pp̄→ρρ = g2 εpp̄ ·kx εx ·εy (C2)

where kx and ky are the four-momenta of particles x and
y and εpp̄, εx and εy are the polarization vectors of the
corresponding particles. In [13] the two cases were calcu-
lated separately. Here we consider the coherent sum of
both amplitudes

Tpp̄→ρρ = T
(1)
pp̄→ρρ cos θ + T

(2)
pp̄→ρρ sin θ (C3)

where the total strength is normalized to BR(pp̄→ ρρ) =
2.4 % from the theoretical estimate in [12]. Figure 3 shows
the result of the calculations of the branching ratio for the
φπ0 final state (including finite width effects) for the full
space of parameters g1, g2. To check the self consistency
of the door–way calculations the contribution of the ρρ

intermediate state to the ωπ0 production has been evalu-
ated as well. Since the ωπ0 channel is not suppressed on
the tree-level, it is gratifying that the one–loop corrections
turn out to be small in comparison with the experimental
data for this channel. At the same time, the contribution
to the OZI suppressed channel φπ0 is very significant for
a broad range of the relative strength of g1 and g2.
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